Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
2.
MMWR Morb Mortal Wkly Rep ; 69(39): 1428-1433, 2020 10 02.
Article in English | MEDLINE | ID: mdl-33001874

ABSTRACT

Excessive alcohol use is a leading cause of preventable death in the United States (1) and costs associated with it, such as those from losses in workplace productivity, health care expenditures, and criminal justice, were $249 billion in 2010 (2). CDC used the Alcohol-Related Disease Impact (ARDI) application* to estimate national and state average annual alcohol-attributable deaths and years of potential life lost (YPLL) during 2011-2015, including deaths from one's own excessive drinking (e.g., liver disease) and from others' drinking (e.g., passengers killed in alcohol-related motor vehicle crashes). This study found an average of 95,158 alcohol-attributable deaths (261 deaths per day) and 2.8 million YPLL (29 years of life lost per death, on average) in the United States each year. Of all alcohol-attributable deaths, 51,078 (53.7%) were caused by chronic conditions, and 52,921 (55.6%) involved adults aged 35-64 years. Age-adjusted alcohol-attributable deaths per 100,000 population ranged from 20.8 in New York to 53.1 in New Mexico. YPLL per 100,000 population ranged from 631.9 in New York to 1,683.5 in New Mexico. Implementation of effective strategies for preventing excessive drinking, including those recommended by the Community Preventive Services Task Force (e.g., increasing alcohol taxes and regulating the number and concentration of alcohol outlets), could reduce alcohol-attributable deaths and YPLL.†.


Subject(s)
Alcoholism/mortality , Life Expectancy/trends , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , United States/epidemiology , Young Adult
3.
MMWR Morb Mortal Wkly Rep ; 69(30): 981-987, 2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32730240

ABSTRACT

Excessive alcohol use is a leading cause of preventable death in the United States (1) and costs associated with it, such as those from losses in workplace productivity, health care expenditures, and criminal justice, were $249 billion in 2010 (2). CDC used the Alcohol-Related Disease Impact (ARDI) application* to estimate national and state average annual alcohol-attributable deaths and years of potential life lost (YPLL) during 2011-2015, including deaths from one's own excessive drinking (e.g., liver disease) and from others' drinking (e.g., passengers killed in alcohol-related motor vehicle crashes). This study found an average of 93,296 alcohol-attributable deaths (255 deaths per day) and 2.7 million YPLL (29 years of life lost per death, on average) in the United States each year. Of all alcohol-attributable deaths, 51,078 (54.7%) were caused by chronic conditions, and 52,361 (56.0%) involved adults aged 35-64 years. Age-adjusted alcohol-attributable deaths per 100,000 population ranged from 20.3 in New Jersey and New York to 52.3 in New Mexico. YPLL per 100,000 population ranged from 613.8 in New York to 1,651.7 in New Mexico. Implementation of effective strategies for preventing excessive drinking, including those recommended by the Community Preventive Services Task Force (e.g., increasing alcohol taxes and regulating the number and concentration of alcohol outlets), could reduce alcohol-attributable deaths and YPLL.†.


Subject(s)
Alcoholism/mortality , Life Expectancy/trends , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Mortality/trends , United States/epidemiology , Young Adult
4.
JMIR Res Protoc ; 9(1): e16320, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31922493

ABSTRACT

BACKGROUND: Alcohol warning labels are a promising, well-targeted strategy to increase public awareness of alcohol-related health risks and support more informed and safer use. However, evidence of their effectiveness in real-world settings remains limited and inconclusive. OBJECTIVE: This paper presents a protocol for a real-world study examining the population-level impact of enhanced alcohol warning labels with a cancer message; national drinking guidelines; and standard drink information on attention, processing, and alcohol-related behaviors among consumers in Canada. Postimplementation modifications to the original protocol due to interference by national alcohol industry representatives are also described. METHODS: This quasi-experimental study involved partnering with local governments in two northern Canadian territories already applying alcohol warning labels on alcohol containers for sale in liquor stores. The study tested an 8-month intervention consisting of three new enhanced, rotating alcohol warning labels in an intervention site (Whitehorse, Yukon) relative to a comparison site (Yellowknife, Northwest Territories) where labelling practices would remain unchanged. Pre-post surveys were conducted at both sites to measure changes in awareness and processing of label messages, alcohol-related knowledge, and behaviors. Liquor store transaction data were collected from both sites to assess changes in population-level alcohol consumption. The intervention was successfully implemented for 1 month before it was halted due to complaints from the alcohol industry. The government of the intervention site allowed the study to proceed after a 2-month pause, on the condition that the cancer warning label was removed from rotation. Modifications to the protocol included applying the two remaining enhanced labels for the balance of the intervention and adding a third wave of surveys during the 2-month pause to capture any impact of the cancer label. RESULTS: This study protocol describes a real-world quasi-experimental study that aimed to test the effectiveness of new enhanced alcohol warning labels as a tool to support consumers in making more informed and safer alcohol choices. Alcohol industry interference shortly after implementation compromised both the intervention and the original study design; however, the study design was modified to enable completion of three waves of surveys with cohort participants (n=2049) and meet the study aims. CONCLUSIONS: Findings from this study will directly inform alcohol labelling policies in Canada and internationally and provide further insight into the alcohol industry's attempts to disrupt research in this area. Additional unimpeded real-world evaluations of enhanced alcohol warning labels are recommended. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR1-10.2196/16320.

5.
Sci Rep ; 9(1): 7484, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31097731

ABSTRACT

Development of antiviral drug resistance is a continuous concern for viruses with high mutation rates such as influenza. The use of antiviral drugs targeting host proteins required for viral replication is less likely to result in the selection of resistant viruses than treating with direct-acting antivirals. The iminosugar UV-4B is a host-targeted glucomimetic that inhibits endoplasmic reticulum α-glucosidase I and II enzymes resulting in improper glycosylation and misfolding of viral glycoproteins. UV-4B has broad-spectrum antiviral activity against diverse viruses including dengue and influenza. To examine the ability of influenza virus to develop resistance against UV-4B, mouse-adapted influenza virus was passaged in mice in the presence or absence of UV-4B and virus isolated from lungs was used to infect the next cohort of mice, for five successive passages. Deep sequencing was performed to identify changes in the viral genome during passaging in the presence or absence of UV-4B. Relatively few minor variants were identified within each virus and the ratio of nonsynonymous to synonymous (dN/dS) substitutions of minor variants confirmed no apparent positive selection following sustained exposure to UV-4B. Three substitutions (one synonymous in PB2, one nonsynonymous in M and PA each) were specifically enriched (>3%) in UV-4B-treated groups at passage five. Recombinant viruses containing each individual or combinations of these nonsynonymous mutations remained sensitive to UV-4B treatment in mice. Overall, these data provide evidence that there is a high genetic barrier to the generation and selection of escape mutants following exposure to host-targeted iminosugar antivirals.


Subject(s)
Antiviral Agents/pharmacology , Drug Resistance, Viral/genetics , Glycoside Hydrolase Inhibitors/pharmacology , Influenza A virus/genetics , Orthomyxoviridae Infections/virology , Animals , Female , Genome, Viral , Influenza A virus/drug effects , Mice , Mice, Inbred BALB C , Mutation , Recombination, Genetic , Selection, Genetic
7.
F1000Res ; 7: 297, 2018.
Article in English | MEDLINE | ID: mdl-29707202

ABSTRACT

Background: The tick cell line ISE6, derived from Ixodes scapularis, is commonly used for amplification and detection of arboviruses in environmental or clinical samples. Methods: To assist with sequence-based assays, we sequenced the ISE6 genome with single-molecule, long-read technology. Results: The draft assembly appears near complete based on gene content analysis, though it appears to lack some instances of repeats in this highly repetitive genome. The assembly appears to have separated the haplotypes at many loci. DNA short read pairs, used for validation only, mapped to the cell line assembly at a higher rate than they mapped to the Ixodes scapularis reference genome sequence. Conclusions: The assembly could be useful for filtering host genome sequence from sequence data obtained from cells infected with pathogens.

8.
J Virol ; 92(15)2018 08 01.
Article in English | MEDLINE | ID: mdl-29769347

ABSTRACT

Wild ducks and gulls are the major reservoirs for avian influenza A viruses (AIVs). The mechanisms that drive AIV evolution are complex at sites where various duck and gull species from multiple flyways breed, winter, or stage. The Republic of Georgia is located at the intersection of three migratory flyways: the Central Asian flyway, the East Africa/West Asia flyway, and the Black Sea/Mediterranean flyway. For six complete study years (2010 to 2016), we collected AIV samples from various duck and gull species that breed, migrate, and overwinter in Georgia. We found a substantial subtype diversity of viruses that varied in prevalence from year to year. Low-pathogenic AIV (LPAIV) subtypes included H1N1, H2N3, H2N5, H2N7, H3N8, H4N2, H6N2, H7N3, H7N7, H9N1, H9N3, H10N4, H10N7, H11N1, H13N2, H13N6, H13N8, and H16N3, and two highly pathogenic AIVs (HPAIVs) belonging to clade 2.3.4.4, H5N5 and H5N8, were found. Whole-genome phylogenetic trees showed significant host species lineage restriction for nearly all gene segments and significant differences in observed reassortment rates, as defined by quantification of phylogenetic incongruence, and in nucleotide sequence diversity for LPAIVs among different host species. Hemagglutinin clade 2.3.4.4 H5N8 viruses, which circulated in Eurasia during 2014 and 2015, did not reassort, but analysis after their subsequent dissemination during 2016 and 2017 revealed reassortment in all gene segments except NP and NS. Some virus lineages appeared to be unrelated to AIVs in wild bird populations in other regions, with maintenance of local AIVs in Georgia, whereas other lineages showed considerable genetic interrelationships with viruses circulating in other parts of Eurasia and Africa, despite relative undersampling in the area.IMPORTANCE Waterbirds (e.g., gulls and ducks) are natural reservoirs of avian influenza viruses (AIVs) and have been shown to mediate the dispersal of AIVs at intercontinental scales during seasonal migration. The segmented genome of influenza viruses enables viral RNA from different lineages to mix or reassort when two viruses infect the same host. Such reassortant viruses have been identified in most major human influenza pandemics and several poultry outbreaks. Despite their importance, we have only recently begun to understand AIV evolution and reassortment in their natural host reservoirs. This comprehensive study illustrates AIV evolutionary dynamics within a multihost ecosystem at a stopover site where three major migratory flyways intersect. Our analysis of this ecosystem over a 6-year period provides a snapshot of how these viruses are linked to global AIV populations. Understanding the evolution of AIVs in the natural host is imperative to mitigating both the risk of incursion into domestic poultry and the potential risk to mammalian hosts, including humans.


Subject(s)
Birds/virology , Ecosystem , Evolution, Molecular , Genome, Viral , Influenza A virus/physiology , Influenza in Birds/genetics , Phylogeny , Animals
9.
J Virol ; 92(12)2018 06 15.
Article in English | MEDLINE | ID: mdl-29618651

ABSTRACT

Eastern equine encephalitis virus (EEEV) has a high case-fatality rate in horses and humans, and Florida has been hypothesized to be the source of EEEV epidemics for the northeastern United States. To test this hypothesis, we sequenced complete genomes of 433 EEEV strains collected within the United States from 1934 to 2014. Phylogenetic analysis suggested EEEV evolves relatively slowly and that transmission is enzootic in Florida, characterized by higher genetic diversity and long-term local persistence. In contrast, EEEV strains in New York and Massachusetts were characterized by lower genetic diversity, multiple introductions, and shorter local persistence. Our phylogeographic analysis supported a source-sink model in which Florida is the major source of EEEV compared to the other localities sampled. In sum, this study revealed the complex epidemiological dynamics of EEEV in different geographic regions in the United States and provided general insights into the evolution and transmission of other avian mosquito-borne viruses in this region.IMPORTANCE Eastern equine encephalitis virus (EEEV) infections are severe in horses and humans on the east coast of the United States with a >90% mortality rate in horses, an ∼33% mortality rate in humans, and significant brain damage in most human survivors. However, little is known about the evolutionary characteristics of EEEV due to the lack of genome sequences. By generating large collection of publicly available complete genome sequences, this study comprehensively determined the evolution of the virus, described the epidemiological dynamics of EEEV in different states in the United States, and identified Florida as one of the major sources. These results may have important implications for the control and prevention of other mosquito-borne viruses in the Americas.


Subject(s)
Encephalitis Virus, Eastern Equine/classification , Encephalomyelitis, Equine/transmission , Whole Genome Sequencing/methods , Animals , Encephalitis Virus, Eastern Equine/genetics , Encephalomyelitis, Equine/epidemiology , Florida/epidemiology , Genetic Variation , Genome Size , Genome, Viral , High-Throughput Nucleotide Sequencing , Horses , Massachusetts/epidemiology , New York/epidemiology , Phylogeny , Phylogeography
10.
Genes (Basel) ; 9(3)2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29494531

ABSTRACT

High throughput sequencing (HTS) has been used for a number of years in the field of paleogenomics to facilitate the recovery of small DNA fragments from ancient specimens. Recently, these techniques have also been applied in forensics, where they have been used for the recovery of mitochondrial DNA sequences from samples where traditional PCR-based assays fail because of the very short length of endogenous DNA molecules. Here, we describe the biological sexing of a ~4000-year-old Egyptian mummy using shotgun sequencing and two established methods of biological sex determination (RX and RY), by way of mitochondrial genome analysis as a means of sequence data authentication. This particular case of historical interest increases the potential utility of HTS techniques for forensic purposes by demonstrating that data from the more discriminatory nuclear genome can be recovered from the most damaged specimens, even in cases where mitochondrial DNA cannot be recovered with current PCR-based forensic technologies. Although additional work remains to be done before nuclear DNA recovered via these methods can be used routinely in operational casework for individual identification purposes, these results indicate substantial promise for the retrieval of probative individually identifying DNA data from the most limited and degraded forensic specimens.

11.
Clin Infect Dis ; 67(3): 327-333, 2018 07 18.
Article in English | MEDLINE | ID: mdl-29471464

ABSTRACT

Background: Influenza vaccination aims to prevent infection by influenza virus and reduce associated morbidity and mortality; however, vaccine effectiveness (VE) can be modest, especially for subtype A(H3N2). Low VE has been attributed to mismatches between the vaccine and circulating influenza strains and to the vaccine's elicitation of protective immunity in only a subset of the population. The low H3N2 VE in the 2012-2013 season was attributed to egg-adaptive mutations that created antigenic mismatch between the actual vaccine strain (IVR-165) and both the intended vaccine strain (A/Victoria/361/2011) and the predominant circulating strains (clades 3C.2 and 3C.3). Methods: We investigated the basis of low VE in 2012-2013 by determining whether vaccinated and unvaccinated individuals were infected by different viral strains and by assessing the serologic responses to IVR-165, A/Victoria/361/2011, and 3C.2 and 3C.3 strains in an adult cohort before and after vaccination. Results: We found no significant genetic differences between the strains that infected vaccinated and unvaccinated individuals. Vaccination increased titers to A/Victoria/361/2011 and 3C.2 and 3C.3 representative strains as much as to IVR-165. These results are consistent with the hypothesis that vaccination boosted cross-reactive immune responses instead of specific responses against unique vaccine epitopes. Only approximately one-third of the cohort achieved a ≥4-fold increase in titer. Conclusions: In contrast to analyses based on ferret studies, low H3N2 VE in 2012-2013 in adults does not appear to be due to egg adaptation of the vaccine strain. Instead, low VE might have been caused by low vaccine immunogenicity in a subset of the population.


Subject(s)
Immunogenicity, Vaccine , Influenza A Virus, H3N2 Subtype/genetics , Influenza Vaccines/immunology , Influenza, Human/epidemiology , Adaptation, Physiological , Adult , Aged , Aged, 80 and over , Animals , Antigens, Viral/immunology , Cohort Studies , Cross Reactions , Eggs/virology , Ferrets , Genome, Viral , High-Throughput Nucleotide Sequencing , Humans , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza Vaccines/therapeutic use , Influenza, Human/prevention & control , Mutation , Phylogeny , Seasons
12.
Emerg Microbes Infect ; 7(1): 10, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29410402

ABSTRACT

Human adenoviruses (HAdVs) are uniquely important "model organisms" as they have been used to elucidate fundamental biological processes, are recognized as complex pathogens, and are used as remedies for human health. As pathogens, HAdVs may effect asymptomatic or mild and severe symptomatic disease upon their infection of respiratory, ocular, gastrointestinal, and genitourinary systems. High-resolution genomic data have enhanced the understanding of HAdV epidemiology, with recombination recognized as an important and major pathway in the molecular evolution and genesis of emergent HAdV pathogens. To support this view and to actualize an algorithm for identifying, characterizing, and typing novel HAdVs, we determined the DNA sequence of 95 isolates from archives containing historically important pathogens and collections housing currently circulating strains to be sequenced. Of the 85 samples that were completely sequenced, 18 novel recombinants within species HAdV-B and D were identified. Two HAdV-D genomes were found to contain novel penton base and fiber genes with significant divergence from known molecular types. In this data set, we found additional isolates of HAdV-D53 and HAdV-D58, two novel genotypes recognized recently using genomics. This supports the thesis that novel HAdV genotypes are not limited to "one-time" appearances of the prototype but are of importance in HAdV epidemiology. These data underscore the significance of lateral genomic transfer in HAdV evolution and reinforce the potential public health impact of novel genotypes of HAdVs emerging in the population.


Subject(s)
Adenovirus Infections, Human/virology , Adenoviruses, Human/genetics , DNA, Viral/genetics , Genome, Viral , Genomics , Adenovirus Infections, Human/epidemiology , Adenoviruses, Human/pathogenicity , Base Sequence , Computational Biology , Evolution, Molecular , Genotype , Humans , Phylogeny , Recombination, Genetic , Sequence Analysis, DNA
13.
PLoS One ; 13(2): e0190977, 2018.
Article in English | MEDLINE | ID: mdl-29390015

ABSTRACT

Foot-and-mouth disease (FMD) is a severe infection caused by a picornavirus that affects livestock and wildlife. Persistence in ruminants is a well-documented feature of Foot-and-mouth disease virus (FMDV) pathogenesis and a major concern for disease control. Persistently infected animals harbor virus for extended periods, providing a unique opportunity to study within-host virus evolution. This study investigated the genetic dynamics of FMDV during persistent infections of naturally infected Asian buffalo. Using next-generation sequencing (NGS) we obtained 21 near complete FMDV genome sequences from 12 sub-clinically infected buffalo over a period of one year. Four animals yielded only one virus isolate and one yielded two isolates of different serotype suggesting a serial infection. Seven persistently infected animals yielded more than one virus of the same serotype showing a long-term intra-host viral genetic divergence at the consensus level of less than 2.5%. Quasi-species analysis showed few nucleotide variants and non-synonymous substitutions of progeny virus despite intra-host persistence of up to 152 days. Phylogenetic analyses of serotype Asia-1 VP1 sequences clustered all viruses from persistent animals with Group VII viruses circulating in Pakistan in 2011, but distinct from those circulating on 2008-2009. Furthermore, signature amino acid (aa) substitutions were found in the antigenically relevant VP1 of persistent viruses compared with viruses from 2008-2009. Intra-host purifying selective pressure was observed, with few codons in structural proteins undergoing positive selection. However, FMD persistent viruses did not show a clear pattern of antigenic selection. Our findings provide insight into the evolutionary dynamics of FMDV populations within naturally occurring subclinical and persistent infections that may have implications to vaccination strategies in the region.


Subject(s)
Buffaloes , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease/virology , Genome, Viral , Amino Acid Sequence , Animals , Cattle , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/transmission , Foot-and-Mouth Disease Virus/isolation & purification , Foot-and-Mouth Disease Virus/pathogenicity , Phylogeny , RNA, Viral/genetics , Sequence Alignment
14.
Gigascience ; 7(3): 1-13, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29329394

ABSTRACT

Background: The 50-year-old Aedes albopictus C6/36 cell line is a resource for the detection, amplification, and analysis of mosquito-borne viruses including Zika, dengue, and chikungunya. The cell line is derived from an unknown number of larvae from an unspecified strain of Aedes albopictus mosquitoes. Toward improved utility of the cell line for research in virus transmission, we present an annotated assembly of the C6/36 genome. Results: The C6/36 genome assembly has the largest contig N50 (3.3 Mbp) of any mosquito assembly, presents the sequences of both haplotypes for most of the diploid genome, reveals independent null mutations in both alleles of the Dicer locus, and indicates a male-specific genome. Gene annotation was computed with publicly available mosquito transcript sequences. Gene expression data from cell line RNA sequence identified enrichment of growth-related pathways and conspicuous deficiency in aquaporins and inward rectifier K+ channels. As a test of utility, RNA sequence data from Zika-infected cells were mapped to the C6/36 genome and transcriptome assemblies. Host subtraction reduced the data set by 89%, enabling faster characterization of nonhost reads. Conclusions: The C6/36 genome sequence and annotation should enable additional uses of the cell line to study arbovirus vector interactions and interventions aimed at restricting the spread of human disease.


Subject(s)
Aedes/virology , Virus Replication/genetics , Zika Virus Infection/genetics , Zika Virus/genetics , Aedes/genetics , Animals , Base Sequence/genetics , Cell Line , Genome, Insect/genetics , Humans , Larva/genetics , Larva/virology , Mosquito Vectors/genetics , Mosquito Vectors/virology , Zika Virus/growth & development , Zika Virus Infection/virology
15.
F1000Res ; 7: 98, 2018.
Article in English | MEDLINE | ID: mdl-31231504

ABSTRACT

The human cell lines HepG2, HuH-7, and Jurkat are commonly used for amplification of the RNA viruses present in environmental samples. To assist with assays by RNAseq, we sequenced these cell lines and developed a subtraction database that contains sequences expected in sequence data from uninfected cells. RNAseq data from cell lines infected with Sendai virus were analyzed to test host subtraction. The process of mapping RNAseq reads to our subtraction database vastly reduced the number non-viral reads in the dataset to allow for efficient secondary analyses.


Subject(s)
Databases, Genetic , Cell Line , DNA Viruses , High-Throughput Nucleotide Sequencing , Humans , Viruses
16.
mSphere ; 2(5)2017.
Article in English | MEDLINE | ID: mdl-28989973

ABSTRACT

Genetic engineering of cytomegalovirus (CMV) currently relies on generating a bacterial artificial chromosome (BAC) by introducing a bacterial origin of replication into the viral genome using in vivo recombination in virally infected tissue culture cells. However, this process is inefficient, results in adaptive mutations, and involves deletion of viral genes to avoid oversized genomes when inserting the BAC cassette. Moreover, BAC technology does not permit the simultaneous manipulation of multiple genome loci and cannot be used to construct synthetic genomes. To overcome these limitations, we adapted synthetic biology tools to clone CMV genomes in Saccharomyces cerevisiae. Using an early passage of the human CMV isolate Toledo, we first applied transformation-associated recombination (TAR) to clone 16 overlapping fragments covering the entire Toledo genome in Saccharomyces cerevisiae. Then, we assembled these fragments by TAR in a stepwise process until the entire genome was reconstituted in yeast. Since next-generation sequence analysis revealed that the low-passage-number isolate represented a mixture of parental and fibroblast-adapted genomes, we selectively modified individual DNA fragments of fibroblast-adapted Toledo (Toledo-F) and again used TAR assembly to recreate parental Toledo (Toledo-P). Linear, full-length HCMV genomes were transfected into human fibroblasts to recover virus. Unlike Toledo-F, Toledo-P displayed characteristics of primary isolates, including broad cellular tropism in vitro and the ability to establish latency and reactivation in humanized mice. Our novel strategy thus enables de novo cloning of CMV genomes, more-efficient genome-wide engineering, and the generation of viral genomes that are partially or completely derived from synthetic DNA. IMPORTANCE The genomes of large DNA viruses, such as human cytomegalovirus (HCMV), are difficult to manipulate using current genetic tools, and at this time, it is not possible to obtain, molecular clones of CMV without extensive tissue culture. To overcome these limitations, we used synthetic biology tools to capture genomic fragments from viral DNA and assemble full-length genomes in yeast. Using an early passage of the HCMV isolate Toledo containing a mixture of wild-type and tissue culture-adapted virus. we directly cloned the majority sequence and recreated the minority sequence by simultaneous modification of multiple genomic regions. Thus, our novel approach provides a paradigm to not only efficiently engineer HCMV and other large DNA viruses on a genome-wide scale but also facilitates the cloning and genetic manipulation of primary isolates and provides a pathway to generating entirely synthetic genomes.

17.
J Clin Microbiol ; 55(12): 3492-3501, 2017 12.
Article in English | MEDLINE | ID: mdl-28978683

ABSTRACT

Influenza A and B viruses are the causative agents of annual influenza epidemics that can be severe, and influenza A viruses intermittently cause pandemics. Sequence information from influenza virus genomes is instrumental in determining mechanisms underpinning antigenic evolution and antiviral resistance. However, due to sequence diversity and the dynamics of influenza virus evolution, rapid and high-throughput sequencing of influenza viruses remains a challenge. We developed a single-reaction influenza A/B virus (FluA/B) multiplex reverse transcription-PCR (RT-PCR) method that amplifies the most critical genomic segments (hemagglutinin [HA], neuraminidase [NA], and matrix [M]) of seasonal influenza A and B viruses for next-generation sequencing, regardless of viral type, subtype, or lineage. Herein, we demonstrate that the strategy is highly sensitive and robust. The strategy was validated on thousands of seasonal influenza A and B virus-positive specimens using multiple next-generation sequencing platforms.


Subject(s)
Influenza A virus/classification , Influenza A virus/isolation & purification , Influenza B virus/classification , Influenza B virus/isolation & purification , Influenza, Human/virology , Multiplex Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Epidemiological Monitoring , High-Throughput Nucleotide Sequencing/methods , Humans , Influenza A virus/genetics , Influenza B virus/genetics , Molecular Epidemiology/methods
19.
PLoS Negl Trop Dis ; 11(8): e0005693, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28771475

ABSTRACT

Venezuelan equine encephalitis (VEE) complex alphaviruses are important re-emerging arboviruses that cause life-threatening disease in equids during epizootics as well as spillover human infections. We conducted a comprehensive analysis of VEE complex alphaviruses by sequencing the genomes of 94 strains and performing phylogenetic analyses of 130 isolates using complete open reading frames for the nonstructural and structural polyproteins. Our analyses confirmed purifying selection as a major mechanism influencing the evolution of these viruses as well as a confounding factor in molecular clock dating of ancestors. Times to most recent common ancestors (tMRCAs) could be robustly estimated only for the more recently diverged subtypes; the tMRCA of the ID/IAB/IC/II and IE clades of VEE virus (VEEV) were estimated at ca. 149-973 years ago. Evolution of the IE subtype has been characterized by a significant evolutionary shift from the rest of the VEEV complex, with an increase in structural protein substitutions that are unique to this group, possibly reflecting adaptation to its unique enzootic mosquito vector Culex (Melanoconion) taeniopus. Our inferred tree topologies suggest that VEEV is maintained primarily in situ, with only occasional spread to neighboring countries, probably reflecting the limited mobility of rodent hosts and mosquito vectors.


Subject(s)
Encephalitis Virus, Venezuelan Equine/genetics , Encephalomyelitis, Venezuelan Equine/epidemiology , Evolution, Molecular , Horse Diseases/virology , Americas , Amino Acid Sequence , Animals , Culex/virology , Encephalitis Virus, Venezuelan Equine/isolation & purification , Encephalomyelitis, Venezuelan Equine/virology , Horse Diseases/epidemiology , Horses/virology , Humans , Insect Vectors/virology , Phylogeny
20.
Genome Announc ; 5(30)2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28751385

ABSTRACT

We report here the complete genome of a Dezidougou virus (DEZV) isolated from a passaged culture of the Zika virus strain DAK AR 41524. The consensus DEZV sequence we recovered shows 99% nucleotide similarity using BLASTN to a previously reported DEZV (accession no. JQ675604.1). The current sequence has additional repeat regions as well as a deleted repeat region, which we confirmed by Sanger sequencing, that were not present in the originally published sequence, JQ675604.1.

SELECTION OF CITATIONS
SEARCH DETAIL
...